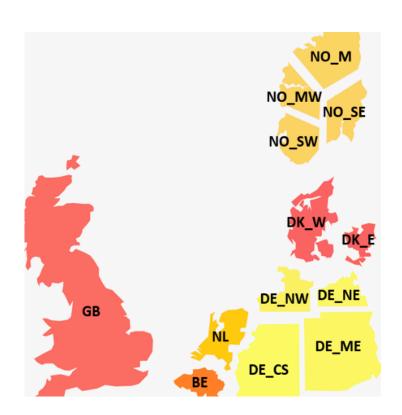


NSON-DK scenarios

Matti Koivisto¹
Juan Gea-Bermúdez²
Poul Sørensen¹

¹DTU Wind Energy ²DTU Management Engineering

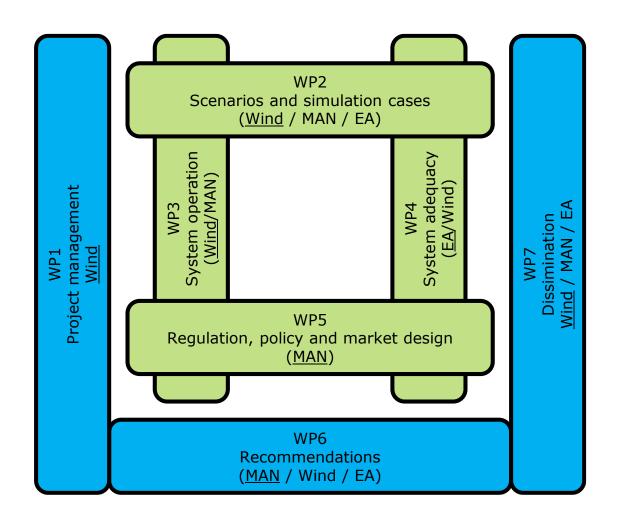
NSON event - WindEurope Offshore 2019 Copenhagen, 28 November 2019


28 November 2019

DTU Wind Energy

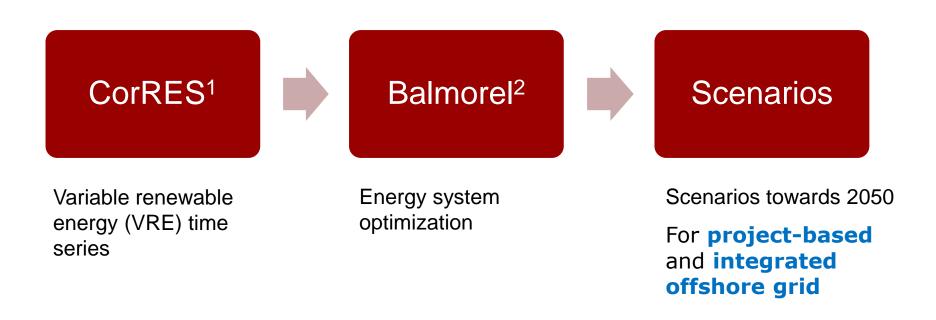
Outline

- Modelling the North Sea region energy system
- 2. Scenarios towards 2050
 - Project-based and integrated offshore grid
 - Brief look at the impacts of sector coupling



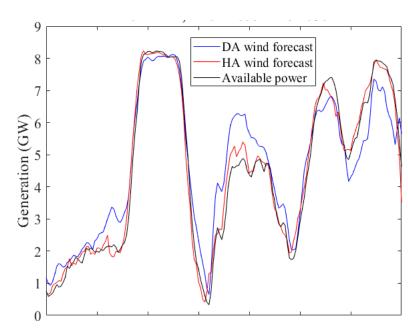
3. Conclusions

Work is funded by the NSON-DK project (Danish Energy Agency, EUDP): http://www.nson-dk-project.dk/



NSON-DK scenarios in the **NSON-DK** project

The energy system modelling


¹M. Koivisto et al., "Using time series simulation tool for assessing the effects of variable renewable energy generation on power and energy systems", *WIREs Energy and Environment*, vol. 8, no. 3, e329, May/June 2019.

²F. Wiese et al., "Balmorel open source energy system model", *Energy Strategy Reviews*, vol. 20, pp. 26-34, April 2018.

CorRES

- CorRES (Correlations in Renewable Energy Sources)
 - Simulation tool for variable renewable energy (VRE) generation
 - Models both wind and solar PV
 - Can model future scenarios (e.g., 2030 or 2050)
- Based on meteorological reanalysis data
 - 37 years of hourly data covering Europe
- · Used in:
 - Research projects
 - Pan-European VRE generation simulations for ENTSO-E
- Can simulate also VRE generation forecast errors
 - Used in balancing studies (more on that later)

Example regional simulation of available wind generation and forecasts (DA = day-ahead; HA = hour-ahead)

1.0

8.0

0.6

0.4

0.2

0.0

200

The energy system modelling

CorRES

Balmorel

Scenarios

Joint optimisation of the **electricity** and **heating** sectors

Transmission and generation investments

Intertemporal value maximization (i.e., expected future taken into account)¹

Installed generation GW

Annual TWh generated

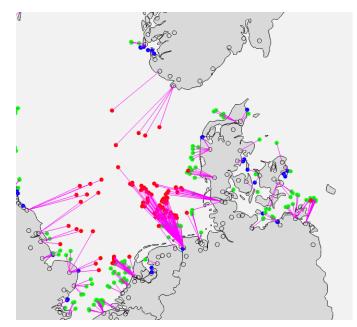
Renewable generation shares

Hourly prices

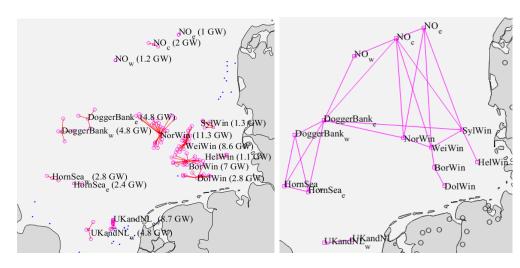
Hourly dispatch

¹Juan Gea-Bermúdez et al., "Optimal generation and transmission development of the North Sea region: impact of grid architecture and planning horizon", *Energy*, early access, 2019.

The project-based and integrated scenario


Project-based

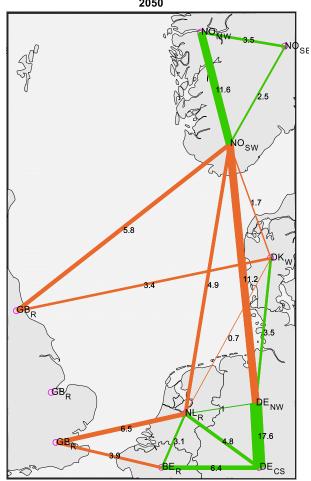
- Offshore wind power plants (OWPPs) are connected radially to onshore
- Only radial transmission lines are allowed in the North Sea


Integrated offshore grid

- North Sea offshore meshed grid is a possibility in the investment optimization
- OWPPs can be connected to hubs
- Hubs can be connected to each other
- Hubs are connected to onshore

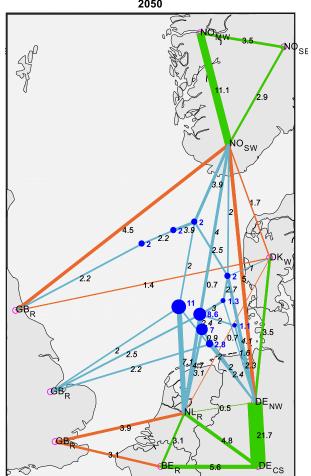
Otherwise the two scenarios are specified with the same cost parameters, etc.

Possible radially connected OWPPs


Possible hub-connected OWPP investments, and some example connections in the meshed scenario

28 November 2019 DTU Wind Energy

Resulting project-based scenario

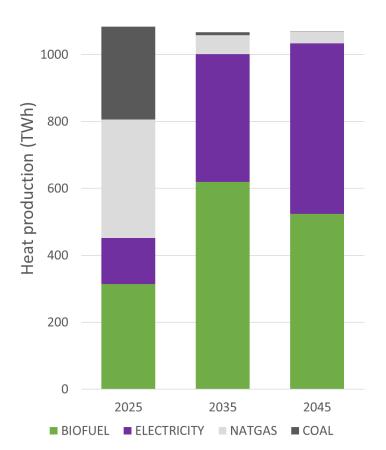

VRE type	Starting point [GW]	2030 [GW]	2050 [GW]
Offshore wind	22	64	92
Onshore wind	76	106	114
Solar PV	70	126	182

Generation share	Starting point	2030	2050
VRE	28%	55%	70%
Renewable	46%	75%	88%

M. Koivisto et al., North Sea offshore grid development: Combined optimization of grid and generation investments towards 2050", *IET Renewable Power Generation*, accepted for publication, 2019.

Resulting integrated offshore grid scenario

VRE type	Starting point [GW]	2030 [GW]	2050 [GW]
Offshore wind	22	69 (30%)	102 (39%)
Onshore wind	76	101	106
Solar PV	70	120	176


Percentages show hub-connected offshore wind shares

Generation share	Starting point	2030	2050
VRE	28%	56%	72%
Renewable	46%	76%	89%

M. Koivisto et al., North Sea offshore grid development: Combined optimization of grid and generation investments towards 2050", IET Renewable Power Generation, accepted for publication, 2019.

Impacts of sector coupling (early results)

Scenario year	Electricity generation [TWh]	Renewable share	Offshore wind [GW]
2025	1284	58%	25
2035	1537	94%	126
2045	1717	96%	158

Note: The sector coupled results are preliminary

Integrated offshore grid sector coupled scenario is not yet run

Results are aggregates for the same countries as shown on previous slides

Conclusions

- Investment optimization towards 2050 was run
 - Simultaneously optimizing generation and transmission investments
- Integrated offshore grid scenario
 - Shows an increase in offshore wind of ~10 GW
 - Shows also (slightly) lower system costs
 - A mixture of radial lines and transmission via the hubs was found optimal
- Sector coupling has potential to increase offshore wind significantly
 - Renewable energy generation share gets close to 100%